Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 106

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of using JENDL-5 on neutronics analysis of transmutation systems

Sugawara, Takanori; Kunieda, Satoshi

Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023) (Internet), 7 Pages, 2023/08

This study investigates the impact of the change from JENDL-4 to JENDL-5 on neutronics analysis of transmutation systems. As the transmutation systems, the following two systems are targeted: JAEA-ADS, a lead-bismuth cooled accelerator-driven system, and MARDS, a molten salt chloride accelerator-driven system. For the JAEA-ADS, the k-eff value increased 189 pcm from JENDL-4 to JENDL-5. It was found that the revisions of various nuclides affected to this difference. For example, the revision of $$^{15}$$N indicated an increase of 200 pcm from the JENDL-4 result. For the MARDS, it was found that the major revision of $$^{37}$$Cl and $$^{35}$$Cl cross sections was the main cause of the k-eff differences. This study confirmed that the difference in the nuclear data libraries still indicated differences in calculation results for the transmutation systems.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2020

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2023-009, 165 Pages, 2023/06

JAEA-Review-2023-009.pdf:5.76MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long-term Plan" successfully and effectively. And, four research centers which are Advanced Science Research Center, Nuclear Science and Engineering Center, Nuclear Engineering Research Collaboration Center and Materials Sciences Research Center, belong to NSRI. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2020 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

JAEA Reports

Investigation of the core neutronics analysis conditions for evaluation of burn-up nuclear characteristics of the next-generation fast reactors

Takino, Kazuo; Oki, Shigeo

JAEA-Data/Code 2023-003, 26 Pages, 2023/05

JAEA-Data-Code-2023-003.pdf:1.66MB

Since next-generation fast reactors aim to achieve a higher core discharge burn-up than conventional reactors do, core neutronics design methods must be refined. Therefore, a suitable analysis condition is required for the analysis of burn-up nuclear characteristics to accomplish sufficient estimation accuracy while maintaining a low computational cost. We investigated the effect of the analysis conditions on the accuracy of estimation of the burn-up nuclear characteristics of next-generation fast reactors in terms of neutron energy groups, neutron transport theory, and spatial mesh. This study treated the following burn-up nuclear characteristics: criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycle. As a result, it was found that the following conditions were the most suitable: 18-energy-group structure, 6 spatial meshes per assembly with diffusion approximation. Additionally, these conditions should apply to correction factors for energy group structure, spatial mesh and transport effects.

Journal Articles

The OECD/NEA Working Group on the Analysis and Management of Accidents (WGAMA); Advances in codes and analyses to support safety demonstration of nuclear technology innovations

Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

Numerical simulation of sodium mist behavior in turbulent Rayleigh-B$'e$nard convection using new developed mist models

Ohira, Hiroaki*; Tanaka, Masaaki; Yoshikawa, Ryuji; Ezure, Toshiki

Annals of Nuclear Energy, 172, p.109075_1 - 109075_10, 2022/07

 Times Cited Count:1 Percentile:31.61(Nuclear Science & Technology)

In order to evaluate the mist behavior in the cover gas region of Sodium-cooled Fast Reactors (SFRs) in good accuracy, turbulent model for Rayleigh-B$'e$nard convection (RBC) was selected, and the Reynolds-averaged number density and momentum equations for mist behavior were developed and incorporated into the OpenFOAM code. In the first stage, the RBC in a simple parallel channel was calculated using Favre-averaged k-$$omega$$ SST model. The average temperature and flow characteristics agreed well with results from DNS, LES, and experiments. Then the basic heat transfer experiment simulating the cover gas region of SFRs was calculated using this turbulent model and new mist models. The calculated average temperature distribution in the height direction and the mist mass concentration agreed well with the experimental results. We developed a method that could simulate the mist behavior in turbulent RBC environments and the cover gas region of SFRs with high accuracy.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2017

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-067, 135 Pages, 2022/03

JAEA-Review-2021-067.pdf:7.31MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2017 as well as the activity on research and development carried out by the Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Materials Sciences Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2015 & 2016

Nuclear Science Research Institute

JAEA-Review 2021-006, 248 Pages, 2021/12

JAEA-Review-2021-006.pdf:7.17MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Middle and long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2015 and 2016 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Material Science Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2019)

Department of HTTR

JAEA-Review 2021-017, 81 Pages, 2021/11

JAEA-Review-2021-017.pdf:2.53MB

The High Temperature Engineering Test Reactor (HTTR) is the first High-Temperature Gas cooled Reactor (HTGR) constructed in Japan at the Oarai Research and Development Institute of the Japan Atomic Energy Agency with 30MW in thermal power and 950$$^{circ}$$C of outlet coolant temperature. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2019, we continued to make effort to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. It is necessary for the HTTR reoperation to prove conformity with the new regulatory requirements for research reactors enacted in December 2013. So we might cope with government agency to pass the inspection of application document for the HTTR licensing. This report summarizes the activities carried out in the fiscal year 2019, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

An Investigation on the control rod homogenization method for next-generation fast reactor cores

Takino, Kazuo; Sugino, Kazuteru; Oki, Shigeo

Annals of Nuclear Energy, 162, p.108454_1 - 108454_7, 2021/11

 Times Cited Count:1 Percentile:16.35(Nuclear Science & Technology)

Journal Articles

Study on chemical form of tritium in coolant helium of high temperature gas-cooled reactor with tritium production device

Hamamoto, Shimpei; Ishitsuka, Etsuo; Nakagawa, Shigeaki; Goto, Minoru; Matsuura, Hideaki*; Katayama, Kazunari*; Otsuka, Teppei*; Tobita, Kenji*

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 5 Pages, 2021/10

Impurity concentrations of hydrogen and hydride in the coolant were investigated in detail for the HTTR, a block type high-temperature gas reactor owned by Japan. As a result, it was found that CH$$_{4}$$ was 1/10 of H$$_{2}$$ concentration, which was under the conventional detection limit. If the ratio of H$$_{2}$$ to CH$$_{4}$$ in the coolant is the same as the ratio of HT to CH$$_{3}$$T, the CH$$_{3}$$T has a larger dose conversion factor, and this compositional ratio is an important finding for the optimal dose evaluation. Further investigation of the origin of CH$$_{4}$$ suggested that CH$$_{4}$$ was produced as a result of a thermal equilibrium reaction rather than being released as an impurity from the core.

Journal Articles

Thermophysical properties of austenitic stainless steel containing boron carbide in a solid state

Takai, Toshihide; Furukawa, Tomohiro; Yamano, Hidemasa

Mechanical Engineering Journal (Internet), 8(4), p.20-00540_1 - 20-00540_11, 2021/08

In a core disruptive accident scenario, boron carbide, which is used as a control rod material, may melt below the melting temperature of stainless steel owing to the eutectic reaction with them. The eutectic mixture produced is assumed to extensively relocate in the degraded core, and this behavior plays an important role in significantly reducing the neutronic reactivity. However, these behaviors have never been simulated in previous severe accident analysis. To contribute to the improvement of the core disruptive accident analysis code, the thermophysical properties of the eutectic mixture in the solid state were measured, and regression equations that show the temperature (and boron carbide concentration) dependence are created.

Journal Articles

Concepts and basic designs of various nuclear fuels, 5; Fuels for high temperature gas-cooled reactor and molten salt reactor

Ueta, Shohei; Sasaki, Koei; Arita, Yuji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.615 - 620, 2021/08

no abstracts in English

Journal Articles

Numerical investigations on the coolability and the re-criticality of a debris bed with the density-stratified configuration

Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.

Journal Articles

Thermal-hydraulics to risk assessment; Roles of thermal-hydraulics simulation to risk assessment

Maruyama, Yu; Yoshida, Kazuo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(7), p.517 - 522, 2021/07

no abstracts in English

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2018 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-074, 105 Pages, 2021/03

JAEA-Review-2020-074.pdf:3.72MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2017 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-073, 113 Pages, 2021/03

JAEA-Review-2020-073.pdf:3.87MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2016 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-072, 102 Pages, 2021/03

JAEA-Review-2020-072.pdf:3.86MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

Journal Articles

Derivation of ideal power distribution to minimize the maximum kernel migration rate for nuclear design of pin-in-block type HTGR

Okita, Shoichiro; Fukaya, Yuji; Goto, Minoru

Journal of Nuclear Science and Technology, 58(1), p.9 - 16, 2021/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Suppressing the kernel migration rates, which depend on both the fuel temperature and the fuel temperature gradient, under normal operation condition is quite important from the viewpoint of the fuel integrity for High Temperature Gas-cooled Reactors. The presence of the ideal axial power distribution to minimize the maximum kernel migration rate allows us to improve efficiency of design work. Therefore, we propose a new method based on Lagrange multiplier method in consideration of thermohydraulic design in order to obtain the ideal axial power distribution to minimize the maximum kernel migration rate. For one of the existing conceptual designs performed by JAEA, the maximum kernel migration rate for the power distribution to minimize the maximum kernel migration rate proposed in this study is lower by approximately 10% than that for the power distribution as a conventional design target to minimize the maximum fuel temperature.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2017)

Department of HTTR

JAEA-Review 2019-006, 97 Pages, 2019/07

JAEA-Review-2019-006.pdf:10.18MB

The High Temperature Engineering Test Reactor (HTTR) was constructed to establish and upgrade basic technologies for HTGRs. In the fiscal year 2017 we continued activities for re-operation of the HTTR and have been inspected the application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors taken effect since December 2013 had been applied. This report summarizes activities and results of HTTR operation, maintenance, international cooperation and so on which were carried out in the fiscal year 2017.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2013 & 2014

Nuclear Science Research Institute

JAEA-Review 2018-036, 216 Pages, 2019/03

JAEA-Review-2018-036.pdf:19.22MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2013 and 2014 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Research Center, Nuclear Science and Engineering Center and Quantum Beam Science Center, and activity of Nuclear Human Resource Development Center, using facilities of NSRI.

106 (Records 1-20 displayed on this page)